首页> 外文OA文献 >Soft Supersymmetry Breaking in Deformed Moduli Spaces, Conformal Theories, and N = 2 Yang-Mills Theory
【2h】

Soft Supersymmetry Breaking in Deformed Moduli Spaces, Conformal Theories, and N = 2 Yang-Mills Theory

机译:变形模量空间中的软超对称破缺,共形   理论和N = 2杨 - 米尔斯理论

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We give a self-contained discussion of recent progress in computing thenon-perturbative effects of small non-holomorphic soft supersymmetry breaking,including a simple new derivation of these results based on an anomaly-freegauged U(1)_R background. We apply these results to N = 1 theories withdeformed moduli spaces and conformal fixed points. In an SU(2) theory with adeformed moduli space, we completely determine the vacuum expectation valuesand induced soft masses. We then consider the most general soft breaking ofsupersymmetry in N = 2 SU(2) super-Yang-Mills theory. An N = 2 superfieldspurion analysis is used to give an elementary derivation of the relationbetween the modulus and the prepotential in the effective theory. This analysisalso allows us to determine the non-perturbative effects of all soft termsexcept a non-holomorphic scalar mass, away from the monopole points. We thenuse an N = 1 spurion analysis to determine the effects of the most general softbreaking, and also analyze the monopole points. We show that naive dimensionalanalysis works perfectly. Also, a soft mass for the scalar in this theoryforces the theory into a free Coulomb phase.
机译:我们对最近的进展进行了独立的讨论,这些进展是在计算小型非全态软超对称破坏的非扰动效应方面取得的进展,包括基于无异常规矩的U(1)_R背景对这些结果进行简单的新推导。我们将这些结果应用于具有变形模数空间和共形不动点的N = 1个理论。在具有变形模量空间的SU(2)理论中,我们完全确定了真空期望值和诱发的软质量。然后,我们考虑N = 2 SU(2)super-Yang-Mills理论中最一般的超对称软破坏。在有效理论中,使用N = 2超场super分析法对模量与势能之间的关系进行了基本推导。这种分析还使我们能够确定所有软项的非摄动效应,除了非全纯标量之外,还远离单极点。然后,我们使用N = 1的支链分析确定最一般的软破坏的影响,并分析单极点。我们表明,朴素的维度分析非常有效。同样,此理论中标量的软质量将理论推到自由库仑阶段。

著录项

  • 作者单位
  • 年度 1999
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号